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Abstract. Phosphoinositide 3-kinase (PI 3-kinase) has 
been implicated in growth factor signal transduction 
and vesicular membrane traffic. It is thought to mediate 
the earliest steps leading from ligation of cell surface 
receptors to increased cell surface ruffling. We show 
here that inhibitors of PI 3-kinase inhibit endocytosis in 
macrophages, not by interfering with the initiation of 
the process but rather by preventing its completion. 
Consistent with earlier studies, the inhibitors wortman- 
nin and LY294002 inhibited fluid-phase pinocytosis and 
Fc receptor-mediated phagocytosis, but they had little 
effect on the receptor-mediated endocytosis of diI- 
labeled, acetylated, low density lipoprotein. Large sol- 
ute probes of endocytosis reported greater inhibition 
by wortmannin than smaller probes did, indicating that 
macropinocytosis was affected more than micropinocy- 
tosis. Since macropinocytosis and phagocytosis are ac- 
tin-mediated processes, we expected that their inhibi- 
tion by wortmannin resulted from deficient signaling 

from macrophage colony-stimulating factor (M-CSF) 
receptors or Fc receptors to the actin cytoskeleton. 
However, video microscopy showed cell surface ruf- 
fling in wortmannin-treated cells, and increased ruffling 
after addition of M-CSF or phorbol myristate acetate. 
Quantitative measurements of video data reported 
slightly diminished ruffling in wortmannin-treated cells. 
Remarkably, the ruffles that formed in wortmannin- 
treated macrophages all receded into the cytoplasm 
without closing into macropinosomes. Similarly, wort- 
mannin and LY294002 did not inhibit the extension of 
actin-rich pseudopodia along IgG-opsonized sheep 
erythrocytes, but instead prevented them from closing 
into phagosomes. These findings indicate that PI 3-kinase 
is not necessary for receptor-mediated stimulation of 
pseudopod extension, but rather functions in the clo- 
sure of macropinosomes and phagosomes into intracel- 
lular organelles. 

M 
ACROPHAGES are actively endocytic cells, exhibit- 
ing measurable fluid-phase pinocytosis, phago- 
cytosis, and receptor-mediated endocytosis of 

soluble ligands. Receptor-mediated endocytosis occurs 
principally through clathrin-coated vesicles (12). Fluid-phase 
pinocytosis includes both macropinocytosis, by pinosomes 
>0.2-1xm diam, and micropinocytosis, by clathrin-coated 
vesicles and small, uncoated vesicles (32). Macropino- 
somes originate primarily at the cell margins as actin-rich 
ruffles that close to form intracellular vesicles. Macrophage 
colony-stimulating factor (M-CSF) ~ and PMA stimulate 
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both ruffling and macropinocytosis in macrophages (23, 
30). Ruffling and macropinocytosis require a functional 
actin cytoskeleton, in that both are sensitive to cytochala- 
sins. For growth factor-stimulated pinocytosis, a signal 
generated by a ligated receptor leads eventually to in- 
creased actin polymerization and ruffling. Although ruf- 
fling is a prerequisite for macropinosome formation, addi- 
tional activities may be required to transform a ruffle into 
a closed intracellular vesicle. To date, no such activities 
have been identified. 

Phagocytosis usually occurs by sequential interactions 
between macrophage surface receptors and opsonic ligands 
on surfaces of particles. Pseudopod advance is guided by 
these tethered ligands, and phagocytosis proceeds as a zip- 
perlike engagement between the macrophage membrane 
and the particle surface. Current models for phagocytosis 
are similar to those for growth factor-stimulated ruffling: 
receptor-ligand interactions signal an increase in actin po- 
lymerization near the membrane, and this polymerized ac- 
tin fills the pseudopod that extends around the particle 
(15). The pseudopod that forms a phagosome would there- 
fore be analogous to the ruffle that forms a macropino- 
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some. Although it is possible that a zipperlike pseudopod 
advance would be sufficient to engulf a particle, other ac- 
tivities may be needed to close the phagosome or to sever 
the small remaining connection to the plasma membrane. 
Thus, although macropinocytosis and phagocytosis differ 
in their contents and in the details of signal transduction, 
they appear mechanistically similar (31). 

Phosphoinositide 3-kinase (PI 3-kinase) has been impli- 
cated in the regulation of endocytosis, intracellular mem- 
brane traffic, and cell growth. Mammalian PI 3-kinase con- 
sists of two molecules, a catalytic subunit (p110) and a 
regulatory subunit (p85). It phosphorylates phosphoinosi- 
tides at the D3 hydroxyl of inositol, producing phosphati- 
dylinositol 3-phosphate, phosphatidylinositol (3, 4)-bis- 
phosphate, or phosphatidylinositol (3, 4, 5)-trisphosphate 
(11). The molecules that interact with 3-phosphoinositides 
to affect cell function are not yet known. Nonetheless, a 
number of cellular processes require PI 3-kinase activity, 
including mitogenesis (6), membrane ruffling (18, 36), 
fluid-phase pinocytosis (3, 8), the respiratory burst (2, 22), 
and lysosomal enzyme sorting (5, 10, 25). The requirement 
of PI 3-kinase for growth factor-stimulated ruffling indi- 
cates that activation of the enzyme is one of the earliest 
signals from activated tyrosine kinase receptors. 

Two reagents have been useful for studying PI 3-kinase 
function in cells. Wortmannin irreversibly inhibits the cat- 
alytic subunit of mammalian PI 3-kinase, and it does so at 
low nanomolar concentrations (1(250 = 3 nM; [1, 33, 38]). It 
inhibits other enzymes as well, but this inhibition requires 
higher concentrations of wortmannin (21, 38). LY294002, 
a quercetin analogue, also specifically inhibits PI 3-kinase. 
Its inhibitory effects are reversible, and it is specific for PI 
3-kinase (35). At concentrations that maximally inhibit PI 
3-kinase, LY294002 shows little or no inhibition of other 
enzymes affected by wortmannin, including phosphatidyl- 
inositol 4-kinase (35), myosin light chain kinase (39), or 
phospholipase A2 (Vlahos, C.J., personal communication). 
As a result of their different chemistries of inhibition, sim- 
ilar effects observed using both nanomolar wortmannin 
and micromolar LY294002 can implicate PI 3-kinase in a 
cellular activity. 

There is presently some confusion about the role of PI 
3-kinase in endocytosis. Several studies have indicated 
that PI 3-kinase is not necessary for receptor-mediated en- 
docytosis of soluble ligands (3, 5, 16, 26, 29) (with one ex- 
ception, reference 19). In contrast with its negligible effect 
on receptor-mediated endocytosis, wortmannin greatly in- 
hints fluid-phase pinocytosis and phagocytosis (3, 8, 19, 22) 
(with two reported exceptions, references 2, 28). It is not 
clear why the different kinds of endocytosis show such dif- 
ferent responses to inhibitors of PI 3-kinase. One possible 
explanation is that PI 3-kinase has a more significant role 
in the intracellular membrane traffic that follows internal- 
ization (16, 29), and that inhibition of this postendocytic 
traffic affects rates of fluid-phase endocytosis more than 
rates of receptor-mediated endocytosis (27). 

Another possible explanation for the different effects of 
wortmannin on receptor-mediated endocytosis and pi- 
nocytosis or phagocytosis is that PI 3-kinase selectively in- 
hibits actin-dependent endocytosis. Since PI 3-kinase is 
necessary for the ruffling that follows binding of PDGF 
(36), insulin, or insulin-like growth factor-1 (18) to their 

receptors, it may be that wortmannin inhibits pinocytosis 
and phagocytosis secondarily, by inhibiting the signaling 
necessary for pseudopod formation. Other components of 
actin-mediated endocytosis could be regulated by PI 3-kinase 
as well. 

As no data are presently available about the role of PI 
3-kinase in fluid-phase pinocytosis and receptor-mediated 
endocytosis in macrophages, and the data on phagocytosis 
are conflicting, the enzyme's contribution to each of the 
three major categories of endocytosis remains unclear. 
Here we examine the role of PI 3-kinase in endocytosis by 
characterizing the effects of wortmannin and LY294002 in 
bone marrow--derived macrophages. Our results indicate 
that PI 3-kinase is not necessary for receptor-mediated en- 
docytosis of a soluble ligand, nor does it participate in the 
signal transduction that initiates ruffling or phagocytosis. 
Rather, it is necessary for completion of actin-dependent 
endocytosis. 

Materials and Methods 

Reagents 
Wortmannin was purchased from Sigma Chemical Co. (St. Louis, MO) 
and was reconstituted to 10 mM in DMSO. LY294002, generously pro- 
vided by Dr. Chris Vlahos (Lilly Research Laboratories, Indianapolis, IN), 
was reconstituted to 50 mM in DMSO. Both were stored at -80°C and di- 
luted in media just before use. Lysine-fixable and nonfLxable fluorescein- 
dextrans, average tool wt 3,000 (FDx3), 10,000 (FDxl0), 70,000 (FDx70), 
and Texas red dextrans, average tool wt 10,000 (TRDxl0) and 70,000 
(TRDx70); diI-labeled, acetylated low density lipoprotein (diI-acLDL); 
rhodamine-phalloidin; and NBD-phallicidin were obtained from Molecu- 
lar Probes, Inc. (Eugene, OR). Lucifer yellow was purchased from Aldrich 
Chemical Co. (Milwaukee, WI). Fluorescein dextran, average mol wt 
150,000, was purchased from Sigma Chemical Co. and was further size- 
fractionated by gel permeation chromatography (4). Recombinant human 
M-CSF was donated by Genetics Institute (Cambridge, MA). Sheep blood 
alsevers and rabbit anti-sheep erythrocyte IgG were obtained from Orga- 
non Teknika-Cappel (Durham, NC). Rabbit anti-cathepsin D serum was 
a gift from Dr. Sadaki Yokota (Yamanashi Medical School, Japan). Anti- 
tubulin mAb (E7) was obtained from the Developmental Studies Hybri- 
doma Bank maintained by the Department of Pharmacology and Molecu- 
lar Sciences, Johns Hopkins University, and the Department of Biological 
Sciences, University of Iowa. All other reagents were purchased from 
Sigma Chemical Co., unless otherwise indicated. 

Cell Culture 
Murine bone marrow-derived macrophages were obtained as previously 
described (30). Bone marrow exudate was obtained from femurs of female 
C3H HeJ mice (The Jackson Laboratory, Bar Harbor, ME). The exudate 
was cultured in medium that promotes growth and differentiation of mac- 
rophages (bone marrow culture medium: 30% L-cell-conditioned me- 
dium, a source of M-CSF, 20% heat inactivated in FBS DME). After 6 or 
7 d of culture, macrophages were harvested from dishes and plated onto 
12- or 25-mm circular coverslips or 24-well culture dishes. Cultures were 
then incubated overnight in medium lacking M-CSF (DME-10F: DME 
with 10% heat-inactivated FBS). All experiments were performed the day 
after plating. 

Cell Labeling with Endocytic Markers 
Nonfixable FDx3, FDxl0, FDx70, FDx150, and lucifer yellow were used 
to measure fluid-phase pinocytosis. For combined immunofluorescence 
and phalloidin staining, lysine-flxable FDx3, FDxl0, FDx70, TRDxl0, and 
TRDx70 were used. The cells were incubated for various intervals in 
Ringer's buffer (RB: 155 mM NaCl, 5 mM KC1, 1 mM MgC12, 2 mM 
Na2HPO4, 10 mM glucose, 10 mM Hepes, pH 7.2, 0.5 mg/ml BSA) con- 
taining one or two fluid-phase markers. For pulse-chase experiments, the 
cells were incubated in RB containing a fluorescent probe for 5 or 30 rain 
at 37°C, washed, and incubated in RB without marker for different times. 
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To measure receptor-mediated endocytosis, dif-acLDL was prepared 
and used as previously described (24). Macrophages were incubated in 
medium containing 5 p.g/ml diI-acLDL at 37"C for 5 or 30 min to allow en- 
docytosis. For acLDL-binding studies, the cells were exposed to dif- 
acLDL at 4°C for 30 min. Nonspecific endocytosis and binding of diI- 
acLDL were measured in the presence of 250 p,g/ml maleylated BSA 
(mBSA; 13, 17). Reported values were corrected by subtracting the values 
for nonspecific labeling. 

Quantitation of fluorophores was performed as described previously 
(4, 30). After incubation to allow either fluid-phase pinocytosis or recep- 
tor-mediated endoeytosis of diI-acLDL, dishes were drained and rinsed 
twice in 1 liter PBS plus 1 mg/ml BSA and then once in 1 liter PBS, each at 
4°C for 5 min. Dishes were drained and cells were lysed in 0.5 mi lysis 
buffer consisting of 0.1% Triton X-100 and 50 mM riffs, pH 8.5. The fluo- 
rescence of lysates was measured in a spectrofluorometer (500 C; SLM- 
AMINCO, Urbana, IL). Fluorescein was measured at excitation 495 nm, 
and emission 514 rim. Lucifer yellow was measured at excitation 430 nm 
and emission 580 rim. These wavelengths allowed selective measurement 
of each fluorophore when the cells were labeled with both fiuorescein and 
lucifer yellow (4). DiI-acLDL was measured at excitation 520 nm and 
emission 567 nm. Protein concentration in lysates was measured by the 
bicinchoninic acid assay (BCA; Pierce Chemical Co., Rockford, tL). 

For phagocytosis measurements,  sheep erythrocytes were washed in 
PBS, opsonized with anti-sheep erythrocyte IgG (Organon Teknika--Cap- 
pel) at 1:50 dilution in PBS for 1 h at 370C, and resuspended in PBS at 109 
erythrocytes per ml. 10 ~1 of opsonized erythrocyte suspension was added 
to each well containing macrophages on 12-mm coverslips. Macrophages 
were incubated for 30 rain at 37°C to allow phagocytosis. To identify inter- 
nalized sheep erythrocytes, extracellular erythrocytes bound to the sur- 
face of macropbages were ruptured by dipping coverslips into distilled wa- 
ter for 30 s (37). Cells were then fixed, and the number of erythrocytes per 
100 macrophages was counted as the phagocytic index. 

To visualize phagocytosis by fluorescence confocal microscopy, sheep 
erythrocytes were labeled covalently with NHS-biotin, and then op- 
sonized with IgG and surface labeled with fluorescein-streptavidin. 15 Izl 
of NHS-biotin (50 mg/ml in dimethyl formamide) was added to 5 × l0 s 
washed erythrocytes in 1 ml 150 mM carbonate buffer. After 20 rain on 
ice, cells were washed three times in PBS, and then were opsonized with 
rabbit anti-sheep erytlirocyte IgG as described above. Macrophages on 
coverslips were preincubated 30 min in 0.5 mi RB + / -  100 nM wortman- 
nin, and then were given 5 × 106 (10 I~!) biotinylated, opsonized erythro- 
cytes plus 100 I~1 of fluorescein-streptavidin (40 p.g/ml in RB/BSA). After 
15 rain to allow phagocytosis, cells were washed free of unbound erythro- 
cytes, fixed for 30 rain at 37°C (fixative = 3.8% formaldehyde, 0.25 M su- 
crose, 1 mM EGTA, 0.5 mM EDTA, 20 mM Hepes, pH 7.4), stained with 
rhodamine-phalloidin (5 min at 5 U/ml in PBS + 0.25% Triton X-100), 
and then mounted in glycerol with phenylenediamine for viewing by fluo- 
rescence confocal microscopy. 

Drug Treatments 
Effects of wortmannin and LY294002 were assessed after a 30-rain prein- 
cubation at the concentrations indicated, followed by incubation with en- 
docytic probes in the presence of the drugs. Control cells were treated 
with 0.1% DMSO, the final concentration of DMSO in preparations 
treated with wortmannin and LY294002. PMA at 60 ng/ml was applied 30 
min before the incubation with fluorophores and at the same time that 
probes were added. M-CSF at 2,000 U/ml was added at the same time as 
the endocytic probes. 

Fluorescence Microscopy 
To observe fluorescent probes internalized by fluid-phase pinocytosis and 
receptor-mediated endocytosis, macrophages on 12-ram, No. 1 coverslips 
were incubated with fluorophores as described above, washed, and then 
fixed with 4% paraformaldehyde in 40 mM Hepes buffer, pH 7.4, contain- 
ing 6.5% sucrose for 1 h at 37°C. After rinsing again with PBS, the cover- 
slips were mounted on glass slides. After fixation, some specimens were 
further rinsed with 0.25% NH4C1 in PBS, permeabilized with 0.25% Tri- 
ton X-100 in PBS, and processed for immunofluoreseence, or for F-actin 
localization using rhodamine-phalloidin or NBD-phallicidin. Rabbit anti-  
cathepsin D serum was diluted 1:500, and mouse monoclonal E7 antibody 
that recognizes tubulin was diluted 1:5 in PBS containing both 0.25% Tri- 
ton X-100 and 2% heat-inactivated goat serum. As secondary antibodies, 
fluorescein or Texas red-labeled antibodies against rabbit IgG or mouse 

IgG (Vector Laboratories, Inc., Burlingame, CA) were used at 1:250 dilu- 
tion. Rhodamine-phalloidin was used at 6 U/ml in PBS containing 0.25% 
Triton X-100. Specimens were observed in an epifluorescence microscope 
(Carl Zeiss, Inc., Thornwood, NY) and photographed using T-Max 400 
film (Eastman Kodak Co., Rochester, NY). 

Confocal images were collected with a laser scanning confocal fluores- 
cence microscope (Axiovert 135 TV; Carl Zeiss, Inc.), with a x63, NA 1.4 
objective lens. Settings allowed simultaneous colocalization of fiuores- 
cein-labeled erythrocytes and rhodamine-phalloidin-stained macrophages 
(laser line = 488, 568; emission filters = LP590, BP515-540). The 
rhodamine-phalloidin did not label the erythrocytes. 

Video Microscopy 
Macrophages plated onto 25-mm-diam coverslips (2 × 105 per coverslip) 
were assembled into Leiden chambers (Medical Systems Corp., Green- 
vale, NY). The chambers were filled with 1.0 mi RB, sealed with silicon oil 
(Fisher Scientific, Fair Lawn, N J), and placed in a temperature-controlled 
stage heater set at 37"C on an inverted microscope (IM-35; Carl Zeiss, 
Inc.). Cells were observed using a ×100 lens, N.A. 1.32, with phase-con- 
trast optics. To add wortmannin, 0.5 ml RB was removed from the cham- 
ber and replaced with RB containing 200 nM wortmannin. PMA and 
M-CSF were similarly applied as 2x  stocks in RB. Cytochalasin D was 
added to cells in RB by adding a concentrated stock (5 mM in DMSO) to 
a final concentration of 10 p.M. Chambers were left 15-30 min after addi- 
tion of drugs before images were recorded. Images were collected by a 
video camera (NC-66X; Dage-MTI Inc., Wabash, MI) mounted on the mi- 
croscope. Time-lapse video recordings were collected using MetaMorph 
2.0 image analysis software (Universal Imaging Co., West Chester, PA) and 
stored in a file server or an optical disc recorder (Panasonic, Secaucus, NJ). 

Quantitative Analysis of Ruffling 
To quantify ruffling, phase-contrast images of macrophages were col- 
lected as a time-lapse series, digitizing one frame every 5 s for 2 rain to as- 
semble a stack of 25 images. In movies made from these stacks, the move- 
ments of ruffles were evident as phase-dense bands that grew in length 
and migrated centripetally along the upper surface of the cells. We quanti- 
fied this activity by measuring the fraction of the pixels in an image of the 
cell whose phase density changed by >20 U of gray value (gray scale of 
0-255) in a 15-s interval. Independent measurements determined that 15-s 
intervals maximized signals from ruffles and minimized signals from or- 
ganelle movements (data not shown). From the stack of 25 images, a mac- 
rophage in frame 15 was traced manually to obtain a binary mask of its 
profile. Then frame 12 was subtracted digitally from frame 15, and a value 
of 100 was added to all pixels. If there were no cellular motion in the 15-s 
interval between frames (or if a frame had been subtracted from itself), 
then the resulting image would be a uniform gray field, and a histogram of 
the pixels within the cell profile would show all pixels with a value of 100. 
Histograms of moving cells were Gaussian curves centered at a gray value 
of 100. To quantify this movement, pixels within the cell profile (defined 
by the binary) with gray values of 0-80 or 120-255 were counted and di- 
vided by the total number of pixels in the cell profile. 

Scanning EM 
Macrophages on coverslips were fixed with 2% glutaraldehyde in 0.1 M 
cacodylate buffer, pH 7.4, containing 6.8% sucrose, for 1 h at room tem- 
perature. Coverslips were then rinsed in buffer, postfixed with 1% os- 
mium tetroxide in 0.1 M cacodylate buffer for 1 h at 4°C, and treated with 
1% tannic acid in distilled water for 30 rain, and then 1% osmium tetrox- 
ide for 30 rain at 4°C. After dehydration in a graded ethanol series, they 
were immersed in t-butyl alcohol overnight, frozen at -20°C, and dried in 
a t-butyl alcohol freeze drier (VFD-21; Vacuum Device Inc., Ibaraki, Ja- 
pan). Specimens were coated with platimum using an ion-coater and ob- 
served with a scanning electron microscope (S-800; Hitachi Ltd., Tokyo, 
Japan). 

Results 

Effects of Wortmannin and LY294002 on Pinocytosis 

The PI 3-kinase inhibitors wortmannin and LY294002 in- 
hibited fluid-phase pinocytosis of FDxl0, with half-maxi- 
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Figure 1. Dose-dependent inhibitory effects of wortmannin (up- 
per graph) and LY294002 (lower graph) on fluid-phase pinocyto- 
sis of FDxl0, receptor-mediated endocytosis of diI-acLDL, and 
phagocytosis of opsonized sheep erythroeytes. Maerophages 
were preincubated 30 min with wortmannin or LY294002 at the 
concentrations indicated. Cells were further incubated with 
FDxl0 (0.5 mg/ml), diI-acLDL, or IgG-opsonized erythrocytes 
for 30 min at 37°C in the presence or absence of the drugs. Quan- 
titation of pinocytosis, phagocytosis, and receptor-mediated en- 
docytosis of diI-acLDL is described in the Material and Methods. 
All values are expressed as percentage of control. For FDxl0 and 
diI-acLDL, each point represents the mean -+ SD of triplicate de- 
terminations; essentially the same results were obtained in two 
additional experiments. Phagocytosis data represent pooled re- 
suits from two independent experiments. 

mal inhibition by wortmannin at 3 nM, and by LY294002 
at 3 ~M (Fig. 1). These dose-response curves were compa- 
rable to the measured effects of these inhibitors on PI 3-kinase 
(35, 38). Since fluid-phase pinocytosis was maximally in- 
hibited by 100 nM wortmannin and 50 t~M LY294002, 
these concentrations were used in further experiments. 

Using different sized fluorescent probes, we determined 
that wortmannin selectively inhibited macropinocytosis. 
Earlier studies had indicated that large probes of pinocy- 
tosis enter macrophages less efficiently than small probes, 

probably because larger molecules have limited access to 
small endocytic vesicles (4). This size-selective influx is 
less evident after stimulation of macropinocytosis, when 
average pinosome dimensions are larger (30; data not 
shown). When the effects of wortmannin on pinocytosis 
were measured using lucifer yellow (mol wt 457) instead of 
FDxl0 (average mol wt 10,000), the dose-response curve 
was similar to that of Fig. 1, but the extent of inhibition 
was less pronounced (data not shown). We postulated that 
the different inhibition measured using these two probes 
reflected a decrease in the average size of pinosomes made 
by wortmannin-treated cells. Accordingly, if larger probes 
preferentially label macropinosomes, and macropinocyto- 
sis is selectively inhibited by wortmannin, then the largest 
probe of pinocytosis should report the greatest inhibition 
by the drug. To test this, we measured the effects of 100 nM 
wortmannin using lucifer yellow and different sizes of fluo- 
rescein dextran: FDx3, FDxl0, FDx70, and FDxl50. Con- 
sistent with a selective inhibition of macropinocytosis by 
wortmannin, larger molecules showed a greater inhibition 
than small molecules did (Fig. 2). 

Fluorescence microscopy supported this interpretation. 
Controls pulsed 5 min with small probes such as lucifer 
yellow or FDx3 in the presence of M-CSF showed fluores- 
cent labeling of both macropinosomes and small pino- 
somes (Fig. 3, a and b). Similar exposure to FDxl50 la- 
beled only macropinosomes (Fig. 3, c and d). These images 
indicated that small endocytic vesicles labeled better with 
small probes than with large probes. Wortmannin-treated 
cells contained no labeled macropinosomes. Instead, lucifer 
yellow and FDx3 labeled only small vesicles (Fig. 3, e and f), 
and FDxl50 did not label anything (Fig. 3, g and h). Thus, 
the different sized probes allowed us to discriminate be- 
tween large and small pinosomes and revealed that wort- 
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Figure 2. Inhibitory effect of wortmannin on fluid-phase pinocy- 
tosis of different sized molecules. Cells were preincubated with 
100 nM wortmannin or 0.1% DMSO only (control) in RB for 30 
min, and then incubated with probes (0.5 mg/ml) in the presence 
or absence of wortmannin for 30 rain at 37°C. The fluorescence of 
lysates was measured. Values are expressed as percentage of con- 
trol (no wortmannin) for each probe (e.g., FDxl0 accumulated in 
wortmannin/FDxl0 accumulated without wortmannin × 100). 

The Journal of Cell Biology, Volume 135, 1996 1252 



LY F Dx 3 FDx 150 P hase 

c 
O 
o 

L -  

O 

Figure 3. Wortmannin selectively inhibited macropinocytosis. Fluorescence micrographs show control and wortmannin-treated cells 
given either lucifer yellow (a and e), FDx3 (b and)'), or FDxl50 (c, d, g, and h) at 0.5 mg/ml for 5 min in the presence of M-CSF. In con- 
trol cells, lucifer yellow and FDx3 label both macropinosomes (arrowheads) and micropinosomes (a and b), and FDxl50 predominantly 
labels macropinosomes (c, arrowheads), which are visible in the corresponding phase-contrast image (d). In wortmannin-treated cells, 
lucifer yellow and FDx3 label micropinosomes, but macropinosomes are not evident (e and f). FDxl50 labeling was undeteetable in 
wortmannin-treated cells. Similar findings were obtained when the concentrations of FDx3 and FDxl50 were normalized for fluorescein 
fluorescence. Bars, 10 ~m. 

mannin inhibited macropinocytosis more than micropi- 
nocytosis. 

M-CSF and PMA stimulate macropinocytosis in macro- 
phages (23, 30). M-CSF signals via cell surface receptors and 
PMA activates protein kinase C. To ask where PI 3-kinase 
functions relative to M-CSF receptors and protein kinase 
C, we measured M-CSF- and PMA-stimulated macropi- 
nocytosis in wortmannin-treated cells. Whereas both M-CSF 
and PMA increased the intracellular accumulation of FDxl50 
about threefold in control cells, neither PMA nor M-CSF 
showed any stimulatory effects in wortmannin-treated 
cells (Fig. 4). Inhibition by wortmannin of PMA- or M-CSF- 
stimulated pinocytosis was apparent even at 5 rain, indicat- 
ing that wortmannin inhibited influx rather than recycling. 
Direct measurements of efflux showed no significant ef- 
fects of wortmannin (data not shown). 

Despite its dramatic effects on pinocytosis, wortmannin 
did not disrupt lysosome morphology. Macrophage tubu- 
lar lysosomes could be labeled in control preparations by a 
30-min pulse with fixable FDxl0, followed by a 30-min 
chase in unlabeled medium (Fig. 5, a and b). These lyso- 
somes contained cathepsin D. In wortmannin-treated cells 
pulsed and chased similarly with FDxl0, cathepsin D-pos- 
itive tubular lysosomes were still evident, but they were 
not labeled with FDxl0 (Fig. 5, c and d). Consistent with 
the size-selective endocytosis noted above, we found that 

the tubular lysosomal compartment could be labeled by 
endocytosis of lucifer yellow in wortmannin; although the 
extent of labeling was much less than that in controls. 
Wortmannin treatment prevented lysosomal labeling by 
endocytosis of FDxl50 (Araki, N.; data not shown). Mac- 
rophages treated with 20 or 50 p~M LY294002 and pulse 
labeled with FDxl0 showed similarly low labeling of lyso- 
somes with FDxl0 (data not shown). When lysosomes 
were prelabeled by endocytosis of 50 ~g/ml Texas red 
ovalbumin before wortmannin treatment, Texas red la- 
beled a compartment that remained tubular after addition 
of wortmannin (data not shown). Consistent with reports 
by Brown et al. (5) and Davidson (10), we observed some 
vacuolation, presumably of prelysosomal compartments, 
in some macrophages 90 min after addition of wortman- 
nin. These vacuoles were not macropinosomes, and they 
were scarce in macrophages treated with 100 nM wort- 
mannin. 

Wortmannin also did not measurably disrupt the organi- 
zation of actin filaments or microtubules. After fixing and 
staining with rhodamine-phalloidin, no clear difference in 
the general distribution of actin filaments was observed 
between control and wortmannin-treated cells (see be- 
low). Moreover, immunofluorescent localization of tubu- 
lin revealed that the generally radial organization of mi- 
crotubules was unaltered by wortmannin (data not shown). 
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Figure 4. Wortmannin inhibited M-CSF- and PMA-stimulated 
pinocytosis of FDxl50. Maerophages were pretreated with 0.1% 
DMSO only (control) or 100 nM wortmannin for 30 rain before 
incubation with FDxlS0. M-CSF (2,000 U/ml) was added to the 
medium at the same time as FDxl50. PMA (60 ng/ml) was added 
30 min before addition of endocytie probes. Cells were incubated 
with 0.5 mg/ml FDxlS0 at 37°C, for the times indicated, in the 
presence of wortmannin, PMA, and M-CSF, as indicated. Fluo- 
rescence of lysates was measured; values represent mean and SD 
of triplicate determinations. Similar results were obtained in two 
additional experiments. 

Effects of Wortmannin and LY294002 on 
Receptor-mediated Endocytosis 

Consistent with a differential role for PI 3-kinase in macro- 
and micropinocytosis, concentrations of wortmannin and 
LY294002 inhibitory for pinocytosis inhibited only slightly 
the receptor-mediated endocytosis of diI-acLDL (Fig. 1). 
Fluorescence microscopy of the cells pulse labeled 5 or 30 
min with diI-acLDL showed that probe was internalized in 
small vesicles, presumably clathrin-coated vesicles (12) 
(Fig. 6 a); macrophages pretreated with 100 nM wortman- 
nin looked much the same (Fig. 6 b). To confirm that the 
observed uptake of diI-acLDL was receptor mediated, la- 
beling and endocytosis of diI-acLDL were measured in the 
presence and absence of excess mBSA, which competi- 
tively binds the scavenger receptor (13, 17). mBSA re- 
duced the fluorometric signal >90% and the fluorescence 
microscopic labeling to undetectable levels (Fig. 6 c). 

Wortmannin and LY294002 showed little effect on ei- 
ther the 5-min accumulation rate, an estimate of influx, or 
the binding of diI-acLDL at 4°C, a measure of surface- 
binding activity (Table I). We therefore conclude that PI 
3-kinase was not necessary for the receptor-mediated en- 
docytosis of acLDL. 

Effect of Wortmannin on Ruffling 

PI 3-kinase was also apparently unnecessary for ruffling. 
When viewed by time-lapse video microscopy, control 
macrophages ruffled at their dorsal surface and marginal 
edges. Circular ruffles generated at the cell margin often 

closed into phase-bright macropinosomes. Ruffling and 
macropinocytosis increased after addition of M-CSF (Fig. 
7 a). Like controls, wortmarmin-treated cells ruffled at the 
dorsal surface. Ruffling at the cell margins seemed slightly 
reduced. Addition of M-CSF increased ruffling in wort- 
mannin-treated cells, and circular ruffles were seen fre- 
quently (Fig. 7 b). Active ruffling was also observed in mac- 
rophages treated with wortmatmin plus PMA (data not 
shown). Scanning EM of macrophages in wortmannin 
showed extensive ruffling of the cell surface (Fig. 8 b). 

We developed a quantitative assay for the movements 
of ruffles in macrophages. The ruffling index, described in 
Materials and Methods, reported the fraction of pixels 
in the macrophage image whose intensity gray values 
changed >20 U (scale of 0-255) in a 15-s interval. Control 
macro~hages (RB) showed a moderate level of ruffling in 
time-lapse movies, which gave ruffling index values of 
0.18-0.30 (Fig. 9). Pretreatment of cells with cytochalasin 
D completely inhibited the ruffling in video sequences and 
reduced the index values to 0.10. This reduction was statis- 
tically significant (P < .001; two-tailed t test). Macrophages 
incubated with wortrnannin showed only a slight reduction 
in the ruffling index, which was still considerably greater 
than that measured in cytoehalasin D-treated macro- 
phages, and not statistically different from controls (P > .05). 

Remarkably, the ruffles formed in wortmarmin-treated 
cells failed to close into macropinosomes. Instead, they 
simply receded into the cytoplasm (Fig 7 b). Similar results 
were obtained with PMA: wortmannin-treated cells ruf- 
fled but made no macropinosomes, These results indicate 
that wortmannin inhibited macropinocytosis not by inhib- 
iting the signaling mechanisms leading from M-CSF recep- 
tors or from protein kinase C to the generation of cell sur- 
face ruffles, but rather by inhibiting the subordinate 
process of ruffle closure into macropinosomes. 

Effects of Wortmannin and LY294002 on Phagocytosis 

To examine the role of PI 3-kinase in phagocytosis, mac- 
rophages were fed IgG-opsonized erythrocytes in the 
presence of wortmannin or LY294002. After 30 min, ex- 
tracellular erythrocytes were lysed by a 30-s exposure to 
distilled water, a treatment that leaves macrophages and 
intracellular erythrocytes intact (9, 37). The phagocytic in- 
dex was then scored as the number of intracellular eryth- 
rocytes per 100 macrophages. By this measure, wortman- 
nin and LY294002 inhibited phagocytosis with a dose 
dependency similar to that observed for pinocytosis (Fig. 1, 
a and b). 

Curiously, however, before osmotic lysis of extracellular 
erythrocytes, the wortmannin-treated cells appeared to 
have partially enclosed the erythrocytes. By scanning 
EM, many wortmannin-treated macrophages contained 
erythrocytes in cuplike pseudopodia (Fig. 8, d and e), 
whereas control preparations indicated complete phagocy- 
tosis (Fig. 8 c). Rhodamine-phalloidin staining of F-actin 
in macrophages fed fluorescently labeled erythrocytes 
showed by fluorescence confocal microscopy that macro- 
phages in wortmannin or LY294002 extended pseudopo- 
dia partway around erythrocytes (Fig. 10). In control mac- 
rophages, only a few erythrocytes appeared in phagocytic 
cups stained with rhodamine-phalloidin, as most had been 
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Figure 5. Wortmannin in- 
hibited pinoeytosis without 
altering lysosome morphol- 
ogy. Maerophages were 
treated with 0.1% DMSO 
(control; a and b) or 100 nM 
wortmannin (c and d) for 30 
rain, and then were incu- 
bated with 0.5 mg/ml lysine- 
fixable FDxl0 for 30 min, fol- 
lowed by chase in probe-free 
medium in the presence or 
absence of wortmannin. Af- 
ter fixation, cells were 
stained to localize cathepsin 
D. (a and c) FDxl0 images; 
(b and d) eathepsin D distri- 
bution in corresponding cells. 
Bar, 10 p.m. 

completely internalized into phagosomes that had then 
lost their associated F-actin. Wortmannin-treated cells dis- 
played more F-actin-rich phagocytic cups than control 
cells, presumably because they were unable to complete 
phagosome closure and subsequent denuding of actin 
from the phagosome (Figs. 8 and 10). Thus, wortmannin 
and LY294002 did not interfere with binding of opsonized 
erythrocytes to Fc-receptors, or with pseudopod extension 
over the erythrocyte surface. Rather, they apparently in- 
hibited the closure of pseudopodia into phagosomes. 

Discussion 

The present study indicated two novel conclusions. First, 
PI 3-kinase was necessary for macropinocytosis and phag- 
ocytosis, but not for micropinocytosis or receptor-medi- 
ated stimulation of pseudopod extension. Second, PI 3-kinase 
contributed to a late step in the formation of macropino- 
somes and phagosomes, probably the closure of pseudopo- 
dia to form intracellular vesicles. This late step is subordinate 
to the mechanism that signals pseudopod extension, but is 
nonetheless essential. 

Fluid-phase pinocytosis and phagocytosis were inhibited 
by wortmannin with an ICs0 of 3 nM and maximal inhibi- 
tion at 100 nM. LY294002, another specific PI 3-kinase in- 
hibitor that is structurally unrelated to wortmannin, also 
showed dose-dependent inhibitory effects. Since LY294002 

is specific for PI 3-kinase and is not known to inhibit other 
kinases affected by wortmannin, we infer that the common 
inhibitory effects observed using wortmannin and LY294002 
reflect inactivation of PI 3-kinase. 

PI 3-Kinase Affects Macropinocytosis More 
Than Micropinocytosis 

An earlier study suggested that different sized probes of 
endocytosis can be used to gauge the dimensions of en- 
docytic compartments or their communicating vesicles (4). 
Accordingly, smaller vesicles internalize small molecules 
such as lucifer yellow more efficiently than large mole- 
cules like FDxl50. In the present study, the apparent inhi- 
bition of pinocytosis by wortmannin increased with the 
molecular size of the probe used to measure it, consistent 
with the interpretation that wortmannin inhibited the for- 
mation of large vesicles more than the formation of small 
vesicles. This was supported by fluorescence microscopy. 
FDxl50 labeled predominantly macropinosomes in con- 
trol cells, and wortmannin treatment inhibited FDxl50 en- 
docytosis completely. FDx3 or lucifer yellow could label 
both macro- and micropinosomes of controls, and after 
wortmannin treatment, only small vesicles were labeled. 
Therefore, the decreased uptake of fluid-phase probes by 
the inhibitors reflected a selective effect on macropinocy- 
tosis. 
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Figure 6. Effects of wortmannin on receptor-mediated endocyto- 
sis of diI-acLDL. Maerophages on coverslips were preincubated 
with 0.1% DMSO (control; a) or 100 nM wortmarmin (b and c), 
then further incubated with 5 ixg/ml diI-acLDL in the presence or 
absence of the drug for 30 min. DiI-acLDL labeled small vesicles 
in both control and wortmannin-treated cells (a and b). Coincu- 
bation with 250 p.g/ml mBSA largely abolished cellular labeling 
with diI-acLDL (c), indicating that the fluorescence in a and b rep- 
resents receptor-mediated endocytosis of diI-acLDL. Bar, 10 Ixm. 

Micropinocytosis occurs by at least two kinds of en- 
docytic vesicle: clathrin-coated vesicles, which mediate most 
receptor-mediated endocytosis, and small, uncoated vesi- 
cles. Since receptor-mediated endocytosis of  diI-acLDL, 
which probably occurs via elathrin-coated vesicles (12), 
was not much affected by wortmannin, we infer that fluid- 
phase pinocytosis via elathrin-coated vesicles was not greatly 
affected either. Judging from lucifer yellow fluorescence, 
it appeared that pinocytosis via small vesicles was slightly 
decreased by wortmarmin, but we could not distinguish the 
contributions of  coated and uncoated vesicles to micropi- 
noeytosis. 

In  addition to the one soluble ligand of  receptor-medi- 
ated endoeytosis described here, others measuring recep- 
tor-mediated endoeytosis have observed similar insensitivity 
to wortmannin (3, 5, 26). Deletion of  the kinase insert re- 
gion of  the colony-stimulating factor receptor (7) and mu- 
tations in the PI  3-kinase-binding domain of the P D G F  
receptor  (16) did not affect receptor internalization, al- 
though receptor degradat ion was affected. However ,  a 
role for PI  3-kinase in receptor-mediated endocytosis 
should not be excluded. Wortmannin  reduced transferrin 
receptor internalization in one study (19), and increased it 
in another (29). Other  studies have indicated relationships 
between PI  3-kinase and components  of  clathrin-coated 
vesicles. The p85 subtmit of  PI  3-kinase contains an Src ho- 
mology 3 (SH3) domain that can bind to dynamin, a pro- 
tein implicated in elathrin-mediated endocytosis (14, 34). 
Therefore,  it remains possible that PI  3-kinase participates 
in some kinds of  receptor-mediated endoeytosis. 

PI 3-Kinase in the Signaling to Pseudopod Formation 

Vigorous ruffling by macrophages in wortmannin was un- 
expected. Despite their role in macropinocytosis in macro- 
phages (23), distributions of neither microtubules nor F-actin 
were significantly perturbed by wortmannin. Other  studies 
have demonstrated a role for PI  3-kinase in growth factor-  
induced ruffling (18, 36). Our  different results may be ex- 
plained by differences in the underlying receptor signaling 
mechanisms. Some receptors, like those for PDGF,  insu- 
lin, and insulin-like growth factor-i ,  use PI 3-kinase in the 
signal transduction for ruffling (18, 36), whereas others, in- 
cluding the M-CSF receptor, the Fc receptor, and perhaps 
also the E G F  receptor (18), do not. The p85 subunit of PI 
3-kinase binds phosphotyrosine residues of  several ty- 
rosine kinase receptors after agonist binds receptor, and 
there is evidence that PI  3-kinase is involved in the early 
signal transduction from ligated receptors (20). Fc recep- 
tors do not contain tyrosine kinase domains, but they asso- 

Table L Quantitative Analysis of the Effects of Wortmannin and LY294002 on Receptor-mediated Binding and Uptake of 
diI-labeled acLDL 

Control Wortmannin LY294002 

Binding at 4°C, 30 min 1,065 -- 15.8 (100%) 1,097 +- 142.8 (103%) 954 -+ 70.9 (90%) 
Uptake at 37°C, 5 rain 2,122 -- 153.6 (100%) 1,782 -+ 345.8 (73%) 2,054 -4- 65.6 (77%) 

Macrophages were pretreated with 0.1% DMSO (control), 100 nM wormmnnin, or 50 p.M LY294002 for 30 rain and incubated with 5 izg/ml diI-acLDL for 30 rain at 4°C or 5 min 
at 37°C in the presence or absence of the drugs. Some cells were incubated with diI-acLDL in the presence of 250 p.g/ml mBSA. Values of cell-associated fluorescence were cal- 
culated as total diI-acLDL minus the amount of diI-acLDL detected in the presence of mBSA, and are expressed as ng probe per nag protein. The amount of dil-ecLDL detected in 
the presence of mBSA was always <400 ng probe per mg protein. Each value represents the mean _+ SD of triplicate determinations in a typical experiment. Similar results were 
obtained in two separate experiments. 
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Figure Z Time-lapse video microscopy of control and wortmannin-treated cells before and after addition of M-CSF. Macrophages on 
coverslips were treated with 0.1% DMSO (control; a) or 100 nM wortmarmin for 30 rain (b), and then observed by phase-contrast mi- 
croscopy. Panels labeled 0 show macrophages before addition of M-CSF. Other panels indicate cells in 2,000 U/ml M-CSF. Numbers 
indicate time intervals (min) in the sequence. Ruffles are visible as phase-dense lines at the periphery of the cells. M-CSF increased ruf- 
fling in both control and wortmannin-treated cells. Circular ruffles dosed into phase-bright macropinosomes in control cells (arrow- 
heads in a). but receded into cytoplasm in wortmannin-treated cells (arrowheads in b). Bar, 10 0an. 

ciate with other proteins that do. Models for Fc receptor 
function include PI 3-kinase as part of the signal cascade 
leading to phagocytosis (15, 22). The data presented here 
indicate that PI 3-kinase functions in Fc receptor-medi- 
ated phagocytosis, but not in the signaling for pseudopod 
extension. 

PI 3-kinase does appear to be part of the early signaling 
that leads to the respiratory burst. Wortmannin inhibits 
agonist-induced responses but not phorbol ester-induced 
responses in neutrophils (1, 2), indicating that PI 3-kinase 
functions upstream of protein kinase C in that signaling 
cascade. However, in macrophages, wortmannin inhibited 
both M-CSF- and PMA-stimulated pinocytosis to the 
same extent, indicating that PI 3-kinase functions down- 
stream of protein kinase C. 

Our observations of macropinocytosis and phagocytosis 
indicate that PI 3-kinase mediates a mechanism that closes 
macropinosomes and phagosomes into intracellular vesi- 
cles. After exposure to wortmannin or LY294002, circular 
ruffles formed and receded into cytoplasm without closing 
into macropinosomes, and pseudopodia extended around 
sheep erythrocytes without enclosing them. Confocal mi- 
croscopy showed phagocytic cups cradling erythrocytes in 
wortmannin-treated macrophages (Fig. 10). 

Other studies have reported inhibited phagocytosis of 
opsonized sheep erythrocytes by wortmannin (22). How- 

ever, in one study, phagocytosis of opsonized erythrocytes 
by bone marrow--derived macrophages was only slightly 
inhibited (2). The different results might reflect a differ- 
ence in the methods used for osmotic lysis of uningested 
erythrocytes. Our preliminary experiments indicated that 
mild osmotic lysis, 20 s of exposure to water instead of 30 s, 
left some partially engulfed erythrocytes intact. In the 
study by Baggiolini et al. (2), erythrocytes were lysed with 
15-s exposure to dilute PBS (9). It is possible that because 
wortmannin allows phagocytosis to proceed part of the 
way toward completion, the macrophages can construct a 
cytoskeletal cup that affords the erythrocytes protection 
against mild osmotic shock. 

In summary, this study indicates that PI 3-kinase con- 
tributes to a late step in macropinocytosis and phagocyto- 
sis, probably the closure of ruffles and pseudopodia to 
form intracellular vesicles. It will be important next to 
characterize the role of PI 3-kinase in this closure mecha- 
nism. 
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Figure 9. Quant i ta t ive  m e a s u r e m e n t s  of  ruffling in macrophages .  
Pairs  o f  digitized, phase-cont ras t  images  of  macrophages ,  sepa-  
r a ted  by an interval  of  15 s, were  analyzed as descr ibed  in Mater i -  
als and Methods .  The  ruffling indices measure  the  fract ion of  pix- 
els in the  cell area  of  one  image that  differ  by >20  gray units  f rom 
the  co r respond ing  pixels in the  second  image. In  contro l  p repara-  
tons  (RB) ,  21-26% of  the  pixels dif fered by that  much.  Trea t -  
m e n t  with cytochalasin D inhibi ted ruffling m o v e m e n t s  and low- 
e red  the  index. W o r t m a n n i n  inhibi ted  ruffling slightly. The  two 
R B  plots  are  to the  left o f  their  cor responding  exper imenta l  con- 
ditions. Bars  show m e a n  and s tandard  error .  D a t a  are  cumulat ive 
m e a s u r e m e n t s  f rom th ree  or  four  separa te  exper iments ;  n = 15 
(cytochalasin D exper iments )  and 20 (wor tmann in  exper iments ) .  

Figure 10. Fluorescence  cordocal  mic roscopy  of  m a c r o p h a g e  
phagocytosis .  F-act in  is labeled  with rhodamine-pha l lo id in  (red). 
IgG-opson ized  ery throcytes  are  surface labeled with biot in and 
f luorescein-s t reptavidin  (green).  In this wor tmann in - t r ea t ed  mac-  
rophage ,  p seudopod ia  ex tend  halfway a round  the  erythrocytes .  
Cont ro l  p repara t ions  showed  intracellular  e ry throcytes  and no  
phagocyt ic  cups (not  shown) .  Bar,  10 txm. 
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